• phone icon +44 7459 302492 email message icon support@uplatz.com
  • Register

BUY THIS COURSE (GBP 32 GBP 99)
4.5 (24 reviews)
( 322 Students )

 

Career Path - AI Product Manager

Build a successful AI Product Management career by mastering strategy, ML concepts, cross-functional skills, ethics & leadership.
( add to cart )
Save 68% Offer ends on 31-Dec-2025
Course Duration: 200 Hours
  Price Match Guarantee   Full Lifetime Access     Access on any Device   Technical Support    Secure Checkout   Course Completion Certificate
New & Hot
Trending
Job-oriented
Instant access

Students also bought -

Completed the course? Request here for Certificate. ALL COURSES

Career Path – AI Product Manager (Self-Paced Online Course)

Artificial Intelligence is not just a technology trend—it is a transformative force driving innovation across every industry, from healthcare and finance to retail, logistics, and beyond. At the intersection of cutting-edge AI technologies and user-focused business solutions stands a crucial role: the AI Product Manager. Uplatz’s Career Path - AI Product Manager – Self-Paced Online Course is expertly designed to prepare professionals to step confidently into this emerging, high-impact role.

This course empowers you with the strategic, technical, and ethical foundations necessary to lead the end-to-end development of AI-powered products. With self-paced access to a rich library of pre-recorded video lessons, real-world use cases, and practical tools, you can take control of your learning journey and develop job-ready skills that are highly valued in today’s AI-driven landscape.

Whether you’re a seasoned product manager looking to expand into AI or a professional from a technical or business background aiming to transition into product leadership, this course will serve as your launchpad into the world of AI innovation.

Why This Course Is Essential

The role of an AI Product Manager is distinct from traditional product management. It involves navigating both the technical complexities of machine learning and the strategic decisions that influence real-world outcomes. AI products are iterative, probabilistic, and highly sensitive to data quality and user behavior. Leading them successfully requires more than product thinking—it demands fluency in AI principles, ethical foresight, and the ability to collaborate with diverse cross-functional teams.

This course addresses that need. It demystifies AI concepts and focuses on the practical application of these technologies in solving user problems. You'll learn how to assess feasibility, define success metrics, manage uncertainty, and ensure responsible AI practices throughout the product lifecycle.

The AI Product Manager course is not only a learning experience—it’s a mindset shift. It helps you transition from merely managing features to crafting AI experiences that deliver value, adapt intelligently, and evolve with user needs.

Who Should Enroll

This course is designed for a wide range of professionals who want to lead at the intersection of AI and business:

  • Product Managers aiming to transition into AI product leadership
  • Technical professionals (engineers, data scientists, ML practitioners) seeking to understand the product and business side of AI
  • Entrepreneurs and startup founders looking to build AI-powered applications and platforms
  • Business analysts, consultants, and strategists exploring AI adoption and implementation
  • UX/UI designers interested in understanding how AI impacts user interaction and product behavior

If you are curious, adaptable, and excited by the possibilities of AI, this course will guide you toward a role where you can lead change, create innovation, and deliver real-world impact.

What You Will Gain

Through this self-paced course, you’ll develop a unique skill set tailored for AI product leadership, including:

  • Understanding of core AI/ML concepts and how to evaluate models and algorithms in a product context
  • Ability to manage cross-functional teams, align business and technical goals, and build AI capabilities into customer-centric solutions
  • Knowledge of the AI product lifecycle—from data collection and model selection to experimentation, deployment, and iteration
  • Frameworks to assess feasibility, manage risks, and create measurable value
  • Tools to ensure responsible and ethical AI development, including fairness, accountability, and transparency considerations
  • Confidence to lead discussions with engineers, data scientists, designers, and stakeholders
  • Real-world examples and case studies that ground your learning in practical applications across industries

The course bridges theory and practice, giving you not only the concepts but also the confidence to step into AI product leadership roles.

How to Use This Course Effectively

To ensure you extract the maximum value from the AI Product Manager – Self-Paced Online Course, it is important to approach it with structure, purpose, and a willingness to apply what you learn. Here’s how to get the most out of the experience:

1. Define Your Personal Learning Goals

Start by identifying why you’re taking this course. Are you preparing for a promotion? Leading a new AI initiative? Launching a startup? Clarifying your intent will help you focus on the most relevant modules and make your learning actionable from the start.

2. Create a Realistic Learning Schedule

The beauty of a self-paced course is its flexibility. However, consistency is key to mastery. Set aside dedicated time each week to study—whether it’s an hour each day or longer weekend blocks. Progressing steadily will help you absorb the material more effectively.

3. Engage with the Content Actively

Rather than passively watching videos, take detailed notes, pause to reflect, and jot down questions. Each module includes concepts that tie into real business scenarios—try to connect them with your own work experiences or case studies you’ve encountered.

4. Apply What You Learn Right Away

Don’t wait until you finish the course to start implementing ideas. Try writing mock PRDs (Product Requirements Documents) for AI features, evaluate datasets you’ve worked with, or conduct stakeholder mapping exercises. This application solidifies your learning and builds a portfolio of your capabilities.

5. Utilize the Downloadable Resources

Many lessons are accompanied by templates, checklists, and frameworks. These resources are not just supplementary—they’re designed to help you turn theory into practice. Use them in your workplace, or adapt them to guide new AI projects you might initiate.

6. Review, Revisit, and Reflect

AI is a fast-moving field, and some concepts may be new or challenging. Don’t hesitate to rewatch videos, revisit notes, or repeat exercises. Lifetime access means you can return whenever you need a refresher or new inspiration.

7. Build a Personal AI Product Toolkit

As you progress, compile your key takeaways, frameworks, and tools into a personal “AI product playbook.” This living document can serve as a strategic reference in interviews, meetings, or while planning new AI features or products.

Take the Lead in AI Product Innovation

The world needs leaders who can translate the power of AI into meaningful, ethical, and scalable products. Uplatz’s AI Product Manager – Self-Paced Online Course equips you to be one of those leaders. You’ll walk away with a practical and strategic toolkit, ready to manage AI projects, collaborate with technical experts, and shape user experiences powered by intelligent systems.

Whether your goal is to pivot your career, gain credibility in an emerging field, or simply deepen your understanding of how AI is changing the product landscape—this course is your catalyst for growth.

Enroll today and begin your journey as a future-ready AI Product Manager, driving innovation where it matters most.

Course/Topic - Machine Learning (basic to advanced) - all lectures

  • In this session we will learn about introduction to Machine Learning. We will start by learning about the basics of Linear Algebra required to learn Machine Language. Further we will learn about Linear equations represented by Matrices and Vectors.

    • 32:51
  • In this module we will learn about the computational roots of matrices. We will learn how to multiply matrix with scalar and vector. We will learn about addition and subtraction of matrices.

    • 27:08
  • In this module we will learn about Num-Pie Linear Algebra to work on Python. It further includes the understanding of the use of functions - #dot, #vdot, #inner, #matmul, #determinant, #solve, #inv. Basic examples of the #dot, #vdot functions will be discussed.

    • 13:55
  • In this module we will learn about how the #inner function work in a two-dimension array. We will also learn its usage in #dot and #vdot. We will see explanation of the functions solving examples.

    • 13:39
  • In this module we will learn about using #matmul function. We will learn about normal product and stack of arrays. We will also learn how to check the dimensions of the array and how to make it compatible.

    • 11:20
  • In this module we will learn about the #determinant function. The basics of the #determinant function will be explained. Examples will be solved with explanations to understand it.

    • 06:46
  • In this module we will learn what a Determinant is. We will also learn about how to find a Determinant. We will further learn how to find the Determinant of a 2*2 and 3*3 matrix learn about the basics of #inv function.

    • 08:40
  • In this module we will learn about the #inv function. We will learn about how to find the inverse of a matrix. We will also learn how to find the Identity matrix for the inverse.

    • 16:32
  • In this module we will discuss about the inverse of a matrix. We will understand what an Inverse is. We will further learn how the Inverse of a matrix is found.

    • 16:44
  • In this module we will learn about the difference of the dot( ) and the inner( ). We will see examples of dot( ) and inner( ), We will also learn about the dissimilarities between the dot( ) and inner( ) with the help of examples.

    • 27:37
  • In this module we will learn about numpy matrix. We will learn the different ways of creating a matrix. We will also learn about a vector as a matrix and its multiplication with matrix.

    • 16:27
  • In this module we will learn about the #numpy.vdot( ) function. This module is a continuation of the previous module. We will also learn about the #numpy,inner( ) function.

    • 16:24
  • In this module we will understand the different concepts like Rank, Determinant, Trace, etc, of an array. Then we will learn how to find the item value of a matrix. We will also learn about the matrix and vector products.

    • 25:27
  • In this module we will learn about the matrix and vector products. We will learn about how it works on imaginary and complex numbers. We will also get an understanding of matmul( ), inner( ), outer( ), linalg.multi_dot( ), tensordot( ), einsom( ), einsum_path( ),linalg.matrix_power( ).

    • 25:02
  • In this module we will learn about the basics of #inverse of a matrix. We will understand what an Inverse is. We will also see examples of inverse of a matrix and learn how to calculate it.

    • 16:44
  • In this module we will learn about the basics of Python. We will also learn about the Packages needed by the machine language. We will further learn the basics of numpy, scipy, pandas, skikit-learn, etc. needed machine learning and data science.

    • 16:18
  • In this module we will understand about SciPy. We will also learn about SkiKit-learn and Theano. We will further learn about TensorFlow, Keras, PyTorch, Pandas, Matplotlib.

    • 19:19
  • In this module we will see examples of the topics discussed in the previous module. We will also start the basics of Python. We will also solve some basic problems.

    • 18:50
  • In this module we will continue the basic problems of Python. We will also understand about Operators. We will also see the different operators and its applications.

    • 21:36
  • In this module we will continue learning the different Operators. We will also learn about Advanced Data types. We will learn and understand the different data types and about Sets.

    • 18:39
  • In this module we will learn about list. We will see the different functions of list. We will also learn about Jupyter notebook.

    • 17:46
  • In this module we will learn about #condition statements in Python in brief. We will also learn about the applications of #condition statements We will solve some examples to understand the #condition statements.

    • 25:44
  • In this module we will learn about the Loop in Pyhton. We will also learn about the different kinds of loops. We will see examples of For loop, and break keyword.

    • 16:48
  • In this module we will continue with the #for loop. We will also learn about the continue keyword. We will solve examples for the usage of the keywords.

    • 20:48
  • In this module we will learn about Functions in Python. We will solve examples using different functions. We will understand how functions work.

    • 16:53
  • In this module we will learn about arguments in functions. We will also solve examples to understand the usage of arguments in functions. We will also learn about #call by reference in Python.

    • 18:40
  • In this module we will learn about strings. We will also learn about types of arguments for functions in python. We will also see the usage of the different types of arguments.

    • 10:36
  • In this module we will learn about default arguments. We will also learn about variable arguments. We will solve examples to understand it better.

    • 06:37
  • In this module we will learn about the remaining arguments. We will understand about default and variable arguments better. We will also learn about keyword arguments.

    • 32:18
  • In this module we will learn about built-in functions. We will also learn about the different built-in functions in python. We will solve examples to understand the functions better.

    • 37:15
  • In this module we will continue the previous functions. We will also learn about other built-in functions. We will also learn about bubble sort in python.

    • 09:44
  • In this module we will learn about the scope of variable in function. We will also learn about the different variables and its usage. We will solve examples using the different variables to understand it better.

    • 13:15
  • In this module we will learn about the math module in python. We will learn about the different inbuilt functions that deal with math functions. We will solve problems using the different math functions.

    • 12:52
  • In this module we will continue with the previous lecture. We will also learn about the different arguments in functions. We will also learn about call by reference in python.

    • 18:40
  • In this module we will continue with the previous lecture. We will also start mathplotlib in python. We will learn the different types of mathplotlib by using jupyter.

    • 1:04:09
  • In this module we will learn about loan calculator using tkinter. We will also learn how to use the loan calculator. We will solve an example to understand its usage.

    • 33:36
  • In this module we will continue with the previous lecture. We will learn how to compute payments using functions. We will also learn about the function getmonthlypayment.

    • 36:44
  • In this module we will learn about numpy function. We will also learn about mathematical and logical operations using numpy. We will also be explained about different numpy arrays.

    • 17:05
  • In this module we will continue with the previous lecture. We will learn about different numpy attributes. We will solve examples using the different attributes and slicing an array.

    • 24:43
  • In this module we will learn about advanced slicing of an array. We will use jupyter to do array slicing. We will understand detail how array slicing works.

    • 29:55
  • In this module we will learn about using jupyter notebook online. We will also learn about ranges. We will learn about creating arrays from ranges. We will also learn about linear space.

    • 28:43
  • In this module we will learn about the average function. We will also learn about the different averages. We will solve examples to understand the function.

    • 21:25
  • In this module we will learn about generating random strings and passwords. We will also learn about generating a string of lower and upper case letters. We will solve examples using the different strings.

    • 21:25
  • In this module we will learn about generating strings. We will also learn about upper case letters and only printing specific letter. We will also learn about alpha numeric letters.

    • 22:46
  • In this module we will learn about the unique function. We will continue using arrays. We will solve example using unique functions in arrays.

    • 16:52
  • In this module we will learn about array manipulation function, We will learn about the delete function in numpy. We will solve examples for better understanding.

    • 10:24
  • In this module we will learn about the insert function in numpy. We will also learn about flattened array. We will solve examples.

    • 10:22
  • In this module we will learn about examples with two dimension arrays. We will also learn about the ravel function. We will also learn about the rollaxis function, swapaxes function.

    • 14:43
  • In this module we will learn about statistical functions. We will also learn about min and max values. We will solve examples using the functions.

    • 06:22
  • In this module we will learn about functions for rounding. We will also learn about round off function, floor function and ceil function. We will solve examples using the functions.

    • 14:16
  • In this module we will learn about numpy append function. We will also learn about resize function. We will solve examples.

    • 25:20
  • In this module we will learn about numpy nonzero function. We will also learn about the where function. We will solve examples using the different functions.

    • 14:23
  • In this module we will learn about matrix library. We will also learn about the different matlib functions We will solve different examples using the matlib function. vvvv

    • 18:25
  • In this module we will learn about the basic operations that can be done on numpy arrays. We will also learn about arithmetic operations and functions. We will do examples with arithmetic operations.

    • 14:40
  • In this module we will learn about numpy filter array. We will do programs on numpy filter array. We will solve examples using the filter array.

    • 16:35
  • In this module we will learn about array manipulation functions. We will see how the array manipulation functions work. We will learn about the different manipulation functions.

    • 29:18
  • In this module we will learn about broadcasting function in numpy. We will also learn about reshape in numpy. We will also learn about removing function in numpy.

    • 24:23
  • In this module we will learn about indexing. We will also learn about slicing. We will solve examples to understand the concept.

    • 15:39
  • In this module we will learn about numpy append function. We will also learn about resize function. We will solve examples using the functions.

    • 25:20
  • In this module we will learn about conversion of numpy dtypes to native python types. We will also learn to create 4*4 matrix in which 0 and 1 are staggered with zero on the main diagonal. We will also learn to create 10*10 matrix elements on the borders will be equal to 1 and inside 0.

    • 22:11
  • In this module we will learn how to use a python program to find the maximum and minimum value of a flattened array. We will also see the function called flat and flatten to make the array flattened. We will learn about function import numpy as np and array-np.arrange( )

    • 19:44
  • In this module we will learn how to generate a random string of a given length. Tutor will address the issues faced in generating random strings. Further in the video, we will discuss the various ways in which generation of a random staring can be performed.

    • 21:46
  • In this video we will be covering on creating a simple project. We will see the practical on how tutor creates a simple project. We will also see some examples on how to create a simple project. The video talks about how to get common items between 2 python numpy arrays.

    • 21:23
  • In this video we will talk about another function in python programming called the split function. The function split divides the arrays into sub arrays. The split() method splits a string into an array of substrings. The split() method returns the new array. The split() method does not change the original string. If (" ") is used as separator, the string is split between words.

    • 11:53
  • This video is a sequel of explanation of spilt function. We will discuss the three types of split functions – 1. Normal split, 2. Horizontal split and 3. Vertical Split. Further we will discuss the roles of split function and what do they do.

    • 12:18
  • In this video we will learn about the numpy filter array. We will further see what is filtering of array. Getting some elements out of an existing array and creating a new array out of them is called filtering of array, using a bullion index list.

    • 16:35
  • In this video we will learn about an important topic in Python, i.e Python file handling. We will see what is a file and the type of executable files. Further we will see what is output and how to view the output. Different access modes that can be opened with the file.

    • 14:08
  • In this video we will see an example on how to open and file in view mode, by giving the name of the file. File statement in Python is used in exception handling to make the code cleaner and much more readable. It simplifies the management of common resources like file streams. ... with open ( 'file_path' , 'w' ) as file : file .

    • 23:38
  • This video is a continuation of file system tutorial. Here we will see to use the append mode and what is append mode. Python has a built-in open() function to open a file. This function returns a file object, also called a handle, as it is used to read or modify the file accordingly. We can specify the mode while opening a file. In mode, we specify whether we want to read r , write w or append a to the file.

    • 28:56
  • In this module we will start a new topic known as random module which is a very important part in numpy. Further we will discuss the functionalities of random module to generate random numbers.

    • 14:48
  • In this module we will see how to generate the arrays on float and hot generate a single floating value from 0 to 1. Further we will see taking array as a parameter and randomly return one of the values.

    • 19:02
  • In this module we will learn the random module in continuations. The random is the module present in the numpy library. This module contains simple random generation methods.

    • 22:41
  • In this module how random module contains functions used to generate random numbers. We will also see some permutations and distribution functions.

    • 22:41
  • In this module we will see the choice functions and the different variants of choice function. Further we will see how to randomly select multiple choices from the list. Random.sample or random.choices are the functions used to select multiple choices or set.

    • 10:03
  • In this module we will see the difference between the sample function and the choices functions. Further, we will do a random choice from asset with Python, by converting it to tuple.

    • 09:21
  • In this module we will learn about the random Boolean in Python, using random.choice. In order to generate Random boolean, we use the nextBoolean() method of the java. util. Random class. This returns the next random boolean value from the random generator sequence

    • 43:00
  • In this module we will learn about the library available in python that is called Pandas. We will see how Pandas is one of the important tools available in Python. Further we will see how Pandas makes sense to list the things.

    • 15:57
  • In this module we will learn about the basics of Pandas. Further we will see how this an important tool for Data scientist and Analysts and how pandas is the back bone of most of the data projects.

    • 05:53
  • This module is a sequel of the previous tutorial on Pandas. In this module we will see practical project on pandas using series and dataframes. Lastly we will learn how to handle duplicate and how to handle information method and shape attribute.

    • 32:00
  • In this video we will see about column clean and how to clean the column. Further we will see how to rename the columns by eliminating symbols and other different ways.

    • 20:58
  • In this module we will learn about how to work with the missing values or null values. Further we will see if the dataset is inconsistent or has some missing values then how to deal with the missing values when exploring the data.

    • 28:10
  • In this video we will see how to perform the imputation on column, i.e., metascore which has some null values. Further we will see how to use describe function on the genre column of the dataset.

    • 15:19
  • In this module we will learn about the frequency of columns. Further we will see about the functio0n called value counts. The value counts function when used on the genre column tells us the frequency of all the columns.

    • 08:09
  • In this video we will learn about the methods of slicing, selecting and extracting. If these methods are not followed properly then we will receive attribute errors. Further we will learn to manipulate and extract data using column headings and index locations.

    • 18:57
  • 2.7 MATPLOTLIB BASICS

    • 20:22
  • 2.7.1 MATPLOTLIB BASICS

    • 20:38
  • 2.7.2 MATPLOTLIB BASICS

    • 17:32
  • 2.7.3 MATPLOTLIB BASICS

    • 04:00
  • 2.7.4 MATPLOTLIB BASICS

    • 11:31
  • 2.7.5 MATPLOTLIB BASICS

    • 07:23
  • 2.7.6 MATPLOTLIB BASICS

    • 16:55
  • 2.7.7 MATPLOTLIB BASICS

    • 11:53
  • 2.7.8 MATPLOTLIB BASICS

    • 17:16
  • 2.7.9 MATPLOTLIB BASICS

    • 17:40
  • 2.7.9.1 MATPLOTLIB BASICS

    • 16:55
  • 2.7.9.11 MATPLOTLIB BASICS

    • 20:38
  • 2.8 AGE CALCULATOR APP

    • 26:46
  • 2.8.1 AGE CALCULATOR APP

    • 12:22
  • 2.8.2 AGE CALCULATOR APP

    • 33:00
  • 2.8.3 AGE CALCULATOR APP

    • 37:56
  • 3.1 MACHINE LEARNING BASICS

    • 27:27
  • 3.1.1 MACHINE LEARNING BASICS

    • 17:31
  • 3.1.2 MACHINE LEARNING BASICS

    • 17:36
  • 3.1.3 MACHINE LEARNING BASICS

    • 15:38
  • 3.1.4 MACHINE LEARNING BASICS

    • 13:53
  • 3.1.5 MACHINE LEARNING BASICS

    • 11:55
  • 3.1.6 MACHINE LEARNING BASICS

    • 18:51
  • 3.1.7 MACHINE LEARNING BASICS

    • 23:55
  • 3.1.8 MACHINE LEARNING BASICS

    • 22:38
  • 3.1.9 MACHINE LEARNING BASICS

    • 29:13
  • 3.1.9.1 MACHINE LEARNING BASICS

    • 17:36
  • 3.2 MACHINE LEARNING BASICS

    • 08:08
  • 4.1 TYPES OF MACHINE LEARNING

    • 35:11
  • 4.1.1 TYPES OF MACHINE LEARNING

    • 15:03
  • 4.1.2 TYPES OF MACHINE LEARNING

    • 16:18
  • 4.1.3 TYPES OF MACHINE LEARNING

    • 13:58
  • 4.1.4 TYPES OF MACHINE LEARNING

    • 19:45
  • 4.1.5 TYPES OF MACHINE LEARNING

    • 05:12
  • 4.1.6 TYPES OF MACHINE LEARNING

    • 31:39
  • 5.1 TYPES OF MACHINE LEARNING

    • 28:19
  • 5.1.1 TYPES OF MACHINE LEARNING

    • 31:56
  • 5.1.2 TYPES OF MACHINE LEARNING

    • 25:08
  • 5.1.3 TYPES OF MACHINE LEARNING

    • 46:37
  • 5.1.4 TYPES OF MACHINE LEARNING

    • 31:00
  • 5.1.5 TYPES OF MACHINE LEARNING

    • 24:21
  • 5.1.6 TYPES OF MACHINE LEARNING

    • 16:20
  • 5.1.7 TYPES OF MACHINE LEARNING

    • 32:53
  • 5.1.8 TYPES OF MACHINE LEARNING

    • 56:20
  • 5.2 MULTIPLE REGRESSION

    • 34:30
  • 5.2.1 MULTIPLE REGRESSION

    • 37:35
  • 5.2.2 MULTIPLE REGRESSION

    • 40:56
  • 5.2.3 MULTIPLE REGRESSION

    • 56:04
  • 5.2.4 MULTIPLE REGRESSION

    • 46:41
  • 5.2.5 MULTIPLE REGRESSION

    • 38:14
  • 5.2.6 MULTIPLE REGRESSION

    • 37:48
  • 5.2.7 MULTIPLE REGRESSION

    • 1:01:26
  • 5.3 KNN INTRO

    • 26:49
  • 5.3.1 KNN ALGORITHM

    • 48:57
  • 5.3.2 KNN ALGORITHM

    • 11:17
  • 5.3.3 INTRODUCTION TO CONFUSION MATRIX

    • 42:22
  • 5.3.4 INTRODUCTION TO SPLITTING THE DATASET USING TRAINTESTSPLIT

    • 24:37
  • 5.3.5 KNN ALGORITHM

    • 50:29
  • 5.3.6 KNN ALGORITHM

    • 56:10
  • 5.4 INTRODUCTION TO DECISION TREE

    • 44:37
  • 5.4.1 INTRODUCTION TO DECISION TREE

    • 39:32
  • 5.4.2 DECISION TREE ALGORITHM

    • 36:41
  • 5.4.3 DECISION TREE ALGORITHM

    • 20:10
  • 5.4.4 DECISION TREE ALGORITHM

    • 55:37
  • 5.5 UNSUPERVISED LEARNING

    • 23:26
  • 5.5.1 UNSUPERVISED LEARNING

    • 09:16
  • 5.5.2 UNSUPERVISED LEARNING

    • 18:28
  • 5.5.3 UNSUPERVISED LEARNING

    • 29:50
  • 5.5.4 AHC ALGORITHM

    • 46:30
  • 5.5.5 AHC ALGORITHM

    • 19:55
  • 5.6 KMEANS CLUSTERING

    • 23:08
  • 5.6.1 KMEANS CLUSTERING

    • 30:25
  • 5.6.2 KMEANS CLUSTERING

    • 1:01:04
  • 5.6.3 DBSCAN ALGORITHM

    • 37:09
  • 5.6.4 DBSCAN PROGRAM

    • 32:45
  • 5.6.5 DBSCAN PROGRAM

    • 49:56
Course Objectives Back to Top

By the end of this course, you will:

  1. Understand the evolving role of an AI Product Manager and how it differs from traditional product management.
  2. Learn AI fundamentals, including machine learning concepts, model lifecycle, and performance metrics.
  3. Master the product lifecycle for AI—from problem scoping to deployment and post-launch evaluation.
  4. Design AI products with a focus on usability, explainability, and user trust.
  5. Collaborate effectively with data scientists, engineers, and stakeholders.
  6. Understand and implement ethical and responsible AI practices.
  7. Gain tools to prioritize features, manage risks, and ensure data quality.
  8. Learn to evaluate vendor solutions and build vs. buy strategies.
  9. Prepare for AI PM interviews, build a strong resume, and position yourself for career advancement.
Course Syllabus Back to Top

Course Syllabus

Module 1: Foundations of AI Product Management

  • Defining the AI Product Manager role and career landscape
  • Understanding the intersection of product, tech, and AI
  • Comparing traditional PM and AI PM roles

Module 2: AI Fundamentals for Product Managers

  • Basics of machine learning and AI concepts
  • Types of AI models and their applications
  • AI model lifecycle: training, testing, validation, deployment

Module 3: Building AI Products

  • Scoping problems and framing AI use cases
  • Data collection, labeling, and governance
  • Feature selection and data pipelines
  • Model evaluation metrics and trade-offs

Module 4: AI Product Lifecycle Management

  • Roadmapping AI features and setting priorities
  • Working with cross-functional AI teams
  • Designing for explainability, fairness, and trust
  • Handling model drift and post-launch iterations

Module 5: Ethical AI and Risk Management

  • AI ethics: bias, privacy, and fairness
  • Legal considerations (GDPR, data consent)
  • Human-in-the-loop and fail-safe design

Module 6: Strategic Thinking and Market Fit

  • Competitive analysis in AI landscapes
  • Identifying user needs for AI solutions
  • Monetization strategies for AI products

Module 7: AI Tooling & Vendor Management

  • Evaluating AI platforms, APIs, and cloud services
  • Build vs. buy decision frameworks
  • Managing technical debt in AI systems

Module 8: Communication, Stakeholder Management, and Metrics

  • Writing effective AI product specs
  • Aligning engineering, business, and UX teams
  • Defining and tracking product success metrics

Module 9: Career Development and Interview Prep

  • Resume tips for AI Product Manager roles
  • Sample interview questions and frameworks
  • LinkedIn branding and networking in the AI space
  • Portfolio-building for aspiring AI PMs

Course Wrap-Up

  • Recap of tools, methods, and skills
  • Final career advice and learning paths for further growth
 
Certification Back to Top

Upon successful completion, you will receive a Course Completion Certificate from Uplatz, certifying your expertise in AI Product Management.

This credential enhances your professional portfolio and serves as a testament to your ability to manage AI-driven initiatives responsibly and strategically. Whether you are transitioning into AI product roles or aiming for leadership positions, this certification will boost your credibility and job readiness.

In addition to the certification, learners will be guided through industry-aligned AI PM interview preparation and career path planning. This includes resume-building tips, mock Q&A sessions, and insights into hiring expectations across various sectors.

Career & Jobs Back to Top

AI Product Managers are in growing demand across technology companies, startups, and traditional industries undergoing AI transformation. With this course, you’ll gain a competitive advantage in an emerging field where product thinking meets cutting-edge AI technologies.

Career Opportunities Include:

  1. AI Product Manager
  2. Machine Learning Product Owner
  3. Product Manager – Computer Vision/NLP
  4. Director of AI Products
  5. Data Product Manager
  6. AI Strategy Consultant
  7. Ethical AI Lead
  8. Chief Product Officer (CPO) in AI-driven companies

Industries Hiring AI PMs:

  • Tech and SaaS
  • Healthcare and Biotech
  • Fintech and Banking
  • Automotive and IoT
  • Retail and E-commerce
  • Telecommunications
  • Media, Marketing, and EdTech

Long-Term Career Paths:

  • Specialize in Responsible AI, AI Ethics, or Data Product Leadership
  • Advance to roles like Head of AI Products or VP Product
  • Transition into AI consulting, innovation leadership, or venture building
  • Leverage AI PM experience to launch AI-driven startups

This course helps you not just break into AI product roles but thrive in them—future-proofing your career for the next wave of tech innovation.

Interview Questions Back to Top
  1. What distinguishes AI product management from traditional product management?
    AI product management requires understanding data, model behavior, and uncertainty—beyond just UI/UX and user stories.
  2. How do you handle model drift in an AI product?
    By monitoring model performance post-launch, retraining with fresh data, and integrating human review when necessary.
  3. What is the role of a product manager during model training and validation?
    To define success criteria, ensure relevant data is used, and align model outputs with user and business needs.
  4. How would you prioritize features for an AI-powered product?
    By balancing user value, technical feasibility, data availability, and ethical considerations.
  5. What steps would you take to reduce bias in an AI product?
    Use diverse training data, fairness audits, human oversight, and feedback loops to mitigate bias.
  6. How do you communicate model limitations to non-technical stakeholders?
    Through analogies, simplified metrics, visualizations, and clear disclaimers about uncertainty and reliability.
  7. Explain how you would decide whether to build or buy an AI solution.
    Consider cost, time, scalability, customization needs, team expertise, and long-term maintenance.
  8. What is the significance of explainability in AI products?
    It builds user trust, ensures transparency, and helps with compliance and debugging.
  9. How do you define success metrics for an AI feature?
    Use both technical metrics (e.g., accuracy, precision) and business metrics (e.g., user engagement, retention, conversion).
  10. Describe a time when you worked with data scientists or engineers on an AI project.
    Highlight collaboration, problem-solving, trade-off decisions, and how your product vision aligned the team.
Course Quiz Back to Top
Start Quiz
Q1. What are the payment options?
A1. We have multiple payment options: 1) Book your course on our webiste by clicking on Buy this course button on top right of this course page 2) Pay via Invoice using any credit or debit card 3) Pay to our UK or India bank account 4) If your HR or employer is making the payment, then we can send them an invoice to pay.

Q2. Will I get certificate?
A2. Yes, you will receive course completion certificate from Uplatz confirming that you have completed this course with Uplatz. Once you complete your learning please submit this for to request for your certificate https://training.uplatz.com/certificate-request.php

Q3. How long is the course access?
A3. All our video courses comes with lifetime access. Once you purchase a video course with Uplatz you have lifetime access to the course i.e. forever. You can access your course any time via our website and/or mobile app and learn at your own convenience.

Q4. Are the videos downloadable?
A4. Video courses cannot be downloaded, but you have lifetime access to any video course you purchase on our website. You will be able to play the videos on our our website and mobile app.

Q5. Do you take exam? Do I need to pass exam? How to book exam?
A5. We do not take exam as part of the our training programs whether it is video course or live online class. These courses are professional courses and are offered to upskill and move on in the career ladder. However if there is an associated exam to the subject you are learning with us then you need to contact the relevant examination authority for booking your exam.

Q6. Can I get study material with the course?
A6. The study material might or might not be available for this course. Please note that though we strive to provide you the best materials but we cannot guarantee the exact study material that is mentioned anywhere within the lecture videos. Please submit study material request using the form https://training.uplatz.com/study-material-request.php

Q7. What is your refund policy?
A7. Please refer to our Refund policy mentioned on our website, here is the link to Uplatz refund policy https://training.uplatz.com/refund-and-cancellation-policy.php

Q8. Do you provide any discounts?
A8. We run promotions and discounts from time to time, we suggest you to register on our website so you can receive our emails related to promotions and offers.

Q9. What are overview courses?
A9. Overview courses are 1-2 hours short to help you decide if you want to go for the full course on that particular subject. Uplatz overview courses are either free or minimally charged such as GBP 1 / USD 2 / EUR 2 / INR 100

Q10. What are individual courses?
A10. Individual courses are simply our video courses available on Uplatz website and app across more than 300 technologies. Each course varies in duration from 5 hours uptop 150 hours. Check all our courses here https://training.uplatz.com/online-it-courses.php?search=individual

Q11. What are bundle courses?
A11. Bundle courses offered by Uplatz are combo of 2 or more video courses. We have Bundle up the similar technologies together in Bundles so offer you better value in pricing and give you an enhaced learning experience. Check all Bundle courses here https://training.uplatz.com/online-it-courses.php?search=bundle

Q12. What are Career Path programs?
A12. Career Path programs are our comprehensive learning package of video course. These are combined in a way by keeping in mind the career you would like to aim after doing career path program. Career path programs ranges from 100 hours to 600 hours and covers wide variety of courses for you to become an expert on those technologies. Check all Career Path Programs here https://training.uplatz.com/online-it-courses.php?career_path_courses=done

Q13. What are Learning Path programs?
A13. Learning Path programs are dedicated courses designed by SAP professionals to start and enhance their career in an SAP domain. It covers from basic to advance level of all courses across each business function. These programs are available across SAP finance, SAP Logistics, SAP HR, SAP succcessfactors, SAP Technical, SAP Sales, SAP S/4HANA and many more Check all Learning path here https://training.uplatz.com/online-it-courses.php?learning_path_courses=done

Q14. What are Premium Career tracks?
A14. Premium Career tracks are programs consisting of video courses that lead to skills required by C-suite executives such as CEO, CTO, CFO, and so on. These programs will help you gain knowledge and acumen to become a senior management executive.

Q15. How unlimited subscription works?
A15. Uplatz offers 2 types of unlimited subscription, Monthly and Yearly. Our monthly subscription give you unlimited access to our more than 300 video courses with 6000 hours of learning content. The plan renews each month. Minimum committment is for 1 year, you can cancel anytime after 1 year of enrolment. Our yearly subscription gives you unlimited access to our more than 300 video courses with 6000 hours of learning content. The plan renews every year. Minimum committment is for 1 year, you can cancel the plan anytime after 1 year. Check our monthly and yearly subscription here https://training.uplatz.com/online-it-courses.php?search=subscription

Q16. Do you provide software access with video course?
A16. Software access can be purchased seperately at an additional cost. The cost varies from course to course but is generally in between GBP 20 to GBP 40 per month.

Q17. Does your course guarantee a job?
A17. Our course is designed to provide you with a solid foundation in the subject and equip you with valuable skills. While the course is a significant step toward your career goals, its important to note that the job market can vary, and some positions might require additional certifications or experience. Remember that the job landscape is constantly evolving. We encourage you to continue learning and stay updated on industry trends even after completing the course. Many successful professionals combine formal education with ongoing self-improvement to excel in their careers. We are here to support you in your journey!

Q18. Do you provide placement services?
A18. While our course is designed to provide you with a comprehensive understanding of the subject, we currently do not offer placement services as part of the course package. Our main focus is on delivering high-quality education and equipping you with essential skills in this field. However, we understand that finding job opportunities is a crucial aspect of your career journey. We recommend exploring various avenues to enhance your job search:
a) Career Counseling: Seek guidance from career counselors who can provide personalized advice and help you tailor your job search strategy.
b) Networking: Attend industry events, workshops, and conferences to build connections with professionals in your field. Networking can often lead to job referrals and valuable insights.
c) Online Professional Network: Leverage platforms like LinkedIn, a reputable online professional network, to explore job opportunities that resonate with your skills and interests.
d) Online Job Platforms: Investigate prominent online job platforms in your region and submit applications for suitable positions considering both your prior experience and the newly acquired knowledge. e.g in UK the major job platforms are Reed, Indeed, CV library, Total Jobs, Linkedin.
While we may not offer placement services, we are here to support you in other ways. If you have any questions about the industry, job search strategies, or interview preparation, please dont hesitate to reach out. Remember that taking an active role in your job search process can lead to valuable experiences and opportunities.

Q19. How do I enrol in Uplatz video courses?
A19. To enroll, click on "Buy This Course," You will see this option at the top of the page.
a) Choose your payment method.
b) Stripe for any Credit or debit card from anywhere in the world.
c) PayPal for payments via PayPal account.
d) Choose PayUmoney if you are based in India.
e) Start learning: After payment, your course will be added to your profile in the student dashboard under "Video Courses".

Q20. How do I access my course after payment?
A20. Once you have made the payment on our website, you can access your course by clicking on the "My Courses" option in the main menu or by navigating to your profile, then the student dashboard, and finally selecting "Video Courses".

Q21. Can I get help from a tutor if I have doubts while learning from a video course?
A21. Tutor support is not available for our video course. If you believe you require assistance from a tutor, we recommend considering our live class option. Please contact our team for the most up-to-date availability. The pricing for live classes typically begins at USD 999 and may vary.



BUY THIS COURSE (GBP 32 GBP 29)